Microbial Source Tracking

Orin C. Shanks
Geneticist
US EPA Region 5
Genomics Training Workshop
April 28, 2005

Building a scientific foundation for sound environmental decisions

EPA/ORD Source Tracking Group

National Risk Management Research Laboratory Water Supply & Water Resource Division Microbial Contaminants Control Branch

Cincinnati Team:

Jorge Santo Domingo Orin Shanks Jingrang Lu Catherine Kelty Mark Rodgers Gina Lamendella

Collaborators:

Marirosa Molina (Athens) Rich Haugland (Cincinnati)

Alumni:

Donald Reasoner
Joyce Simpson
Michelle Bonkoski
Jay Hua
Jean Tang

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental

decisions

Microbial Source Tracking Presentation Outline

I. Overview

II. EPA Guide Document

III. Current Research

Sample Area:

39% rivers/streams (269K miles)

45% lakes/ponds (7.7 million acres)

51% estuaries (15K square miles)

Rivers and Streams:

Most common biological contaminant

13% bacterial pollution

35% of reported problems

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Protecting America's Public Health PREVENTION with RISK ASSESSMENT

RISK

Building a scientific foundation for sound environmental decisions

Monitoring Fecal Pollution

Microbial "Fecal Indicators"

- Represents fecal pollution event
- Bacteria from animal intestine

Traditional Methods

- Presence/absence
- Count per unit volume

Building a scientific foundation for sound environmental decisions

Feces Production in the U.S.

1x10¹² kg/year

Building a scientific foundation for sound environmental decisions

Wildlife Contributions

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound

environmental

decisions

Microbial Source Tracking

CONCEPT.... Match microbe from a polluted site and an animal source to suggest the origin of fecal pollution.

Building a scientific foundation for sound environmental decisions

When are Microbial Source Tracking Methods Useful?

To supplement sanitary surveys:

- Identify sources of beach contaminants
- Identify sources of TMDL violations

For risk analyses:

- Human versus non-human
- Human versus domestic animal

Building a scientific foundation for sound environmental decisions

Why Should Microbial Source Tracking Work?

Intestinal microbes of animal groups are expected to be different:

- Gut conditions
 - Temperature
 - Diet
 - Digestive system
- Natural selection
 - Space
 - Nutrients

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

"Source Identifiers"

Definition... microbial populations that are particular to a specific animal host

Ideal Candidates:

- Exhibit host-specificity
- Abundant in host
- Temporal stability
- Geographic continuity

Building a scientific foundation for sound environmental decisions

Microbial Source Tracking Method Classifications

- Qualitative vs. Quantitative
- Phenotypic vs. Genotypic
- Library-dependent vs. Library-independent

Published:

Simpson, J. M., J. W. Santo Domingo, and D. J. Reasoner. 2002. Microbial Source Tracking – State of Science. Environ. Sci. & Tech. 36:5279-5288.

Building a scientific foundation for sound environmental

decisions

Library Dependent Methods

■ Library = "Fingerprint" database of *E. coli* or fecal enterococci isolates

- Requires 1,000s of isolates from water and suspected animal sources
- CULTURE-DEPENDENT

Building a scientific foundation for sound environmental decisions

Library Dependent Methods

- **ARA** (antibiotic resistance analysis)
- **CUP** (carbon utilization profiles)
- **PFGE** (pulse field gel electrophoresis)
- **RFLP** (restriction fragment length polymorphism)
- **AFLP** (amplified fragment length polymorphism)
- **RAPD** (random amplified polymorphic DNA)
- **rep-PCR** (repetitive extragenic palindromic)
- **Ribotyping** (RFLP using rDNA probes)

Building a scientific foundation for sound environmental decisions

Library Dependent Method Logistics

METHOD	Targets tested	Cultivation	Major Costs	Time Required*
ARA	Escherichia coliFecal streptococciEnterococcus spp.	•Individual •Isolates	•Antibiotics •96-well microplates	•4-5 days
CUP	Escherichia coliFecal streptococciEnterococcus spp.	•Individual •Isolates	•Microplates with substrates (e.g., Biolog, Phene Plate)	•2-5 days
rep-PCR	•Escherichia coli	•Individual •Isolates	PCR reagentsPCR disposableGel electrophoresis	•1 day
RAPD	•Escherichia coli	•Individual •Isolates	PCR reagentsPCR disposableGel electrophoresis reagents	•1 day
AFLP	•Escherichia coli	•Individual •Isolates	•DNA extraction kit •AFLP kit (\$5 per reaction)	•5 days
PFGE	Escherichia coliEnterococcus spp.	•Individual •Isolates	•Plug prep. reagents •Restriction enzymes •Gel electrophoresis reagents	•2-4 days
Ribotyping	Escherichia coliFecal streptococciEnterococcus spp.	•Individual •Isolates	 DNA purification reagents Gel electrophoresis reagents Restriction enzymes Hybridization/ detection solutions Labeled gene probe 	•1-3 days

Building a scientific foundation for sound environmental decisions

Library Dependent Method: Antibiotic Resistance Analysis

Building a scientific foundation for sound environmental decisions

Advantages and Disadvantages of ARA

<u>Advantages</u>

- Easy to type
- Easy to perform
- Easy to interpret
- Inexpensive

<u>Disadvantages</u>

- Transferable trait
- Geographic specific
- Temporal specific
- Culture dependent
- Breaks down in complex watersheds

Building a scientific foundation for sound environmental decisions

Library Dependent Method: rep-PCR DNA Fingerprint Patterns

(Dombek et al., 2000)

From this ...

... to this

Building a scientific foundation for sound environmental decisions

Advantages and Disadvantages of rep-PCR

<u>Advantages</u>

- Easy to type
- Easy to perform
- Easy to interpret
- Highly reproducible

<u>Disadvantages</u>

- Library dependent
- May be geographic specific
- May be temporal specific
- Culture dependent

Building a scientific foundation for sound environmental decisions

Library Independent Methods

- Phage typing (serotypic or genotypic)
- Gene specific PCR
- Total Community Analysis
- Host-specific PCR

Building a scientific foundation for sound environmental decisions

Library Independent Method Logistics

METHOD	Targets tested	Cultivation	Major Costs	Time Required*
Phage Typing	• F+ coliphage	•Individual •Isolates	Hybridization/ detection solutionsLabeled gene probePhage specific antigen	•1-3 days
Gene Specific PCR	• E. coli toxins	•Sample Enrichment	•PCR reagents •PCR disposables	•2 days
Total Community Analysis	• 16S rRNA	•None	Filtration unitsPCR reagentsPCR disposablesDNA sequencing	•1 month
Host Specific PCR	 Bacteroides Bifidobacteria Enterococcus Rhodococcus F+ coliphage Enterovirus Adenovirus 	•None	Filtration unitsPCR reagentsPCR disposable	•6-8 hours

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Host-Specific PCR: Bacteroides 16S rDNA

Bernard & Field, (2000) AEM 66, 4571-4574 Dick et al, (2005) AEM in press

- Primer sets that discriminate between human, ruminant, horse, and pig fecal pollution
- Target 16S rDNA from fecal Bacteroides
- Successful in fresh and marine waters

Building a scientific foundation for sound environmental decisions

Why *Bacteroides* as a Source Identifier?

- Only found in feces, rumen, and body cavities
- 1/3 of fecal flora
- Obligate anaerobes
- Limited survival in environment
- Host-specific variation in animal hosts

Comparative Sequence Analysis of 16S rRNA

16S rRNA of Bacteroides mooii

16S rRNA of Bacteroides horseii

670

B. horseii

GGUAGAAUUC

Advantages of Host-Specific PCR

- Culture independent
- No library required
- Rapid
- Sensitive
- Defined target
- Isolate target in a complex environment
- Automated analysis

Building a
scientific
foundation
for sound
environmental
decisions

Current Limitations of Host-Specific PCR

- PCR inhibition
- Targets only one gene
- Targets only one bacterial group
- Targets are found in low numbers
- Limited number of case studies
- Small target sequence databases
- Current targeted genes have little to do with host/microbe interactions

Building a scientific foundation for sound environmental decisions

PART II

US EPA Microbial Source Tracking Guide Document

Office of Research and Development

National Risk Management Research Laboratory

Water Supply & Water Resource Division

Microbial Contaminants Control Branch

Building a scientific foundation for sound environmental decisions

Why is a Guide Document Needed?

Recent proliferation of new methods

- Genotypic
- Phenotypic
- Culture-based
- Culture-independent
- Different levels of discrimination

Most useful method depends on circumstances

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

I. Introduction

- What is Microbial Source Tracking?
- Definitions of terms

II. Decision Criteria

- When methods should be used
- Importance of sanitary surveys
- Decision tree

Building a scientific foundation for sound environmental decisions

Decision Tree

Questions:

- Is the problem adequately defined?
- Has an adequate sanitary survey been conducted?
- How many sources were identified?
- Is the study area of manageable size?
- What is the desired level discrimination?

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

III. MST Approaches

- Summary of all current methods
 - Explanations of how they work
 - Summary tables with advantages and disadvantages
 - References

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

IV. Data Collection and Analysis

- Design sampling around study objectives
- General principles for sampling
- Library construction and validation
- Spatial and temporal variability
- Similarity measurement methods

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

V. Performance Standards

- Universal quality measures
- Method-specific controls
- Method-specific performance criteria

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

VI. Assumptions and Limitations

- Characteristics of source identifiers
 - Specificity
 - Distribution in host
 - Geographic range
 - Temporal stability
 - Survival in water

Building a scientific foundation for sound environmental decisions

Content of Microbial Source Tracking Guide Document

VII. Applications of Microbial Source Tracking Approaches

- Eight case studies are presented
- A glossary of terms is presented

Building a scientific foundation for sound environmental decisions

The Guide Document is Now Available!

Contact Information
Jorge W. Santo Domingo
santodomingo@epa.gov

Office of Research and Development
National Risk Management Research
Laboratory
Water Supply & Water Resource Division
Microbial Contaminants Control Branch

Building a scientific foundation for sound environmental decisions

PART III

Current Research

EPA/ORD Source Tracking Group

Office of Research and Development
National Risk Management Research Laboratory
Water Supply & Water Resource Division
Microbial Contaminants Control Branch

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental

decisions

Current Research

- Expand Library of 16S rDNA Sequences from Fecal Sources
- Validation of Bacteroides 16S rDNA Host-Specific PCR Method
- Evaluation of Best Management Practices
- Discovery of Novel Source Identifiers

Building a scientific foundation for sound environmental decisions

USEPA 16S rDNA Sequence Fecal Microbe Library

- Fecal Sources (n = 300)
 - Domestic animals
 - Wildlife
 - Humans

- 16S rDNA sequences
 - **Bacteroidales** (n = 1,000)
 - **Clostridium** (n = 500)
 - **■** Enterococci (n = 1,500)
 - Bifidobacterium (n = 100)

Building a scientific foundation for sound environmental decisions

Host-Specific 16S rDNA PCR Method Validation: Target Specificity

- Test host-specific primer sets against fecal library
 - Ruminant-specific
 - Human-specific
 - Pig-specific
 - Horse-specific
- If cross-specificity observed, then
 - Sequence 16S rRNA
 - Add to database

Building a scientific foundation for sound environmental decisions

Host-Specific 16S rDNA PCR Method Validation: Spatial Stability

= EPA

= Others

Building a scientific foundation for sound environmental decisions

Delaware Project: Best Management Practice Evaluation

(Collaboration with DelawareDepartment of Natural Resources and Environmental Control)

Method Overview

Progress

- Cows, sediment, & water
- 700 16S rRNA sequences

- Fences installed (Spring 2004)

DNA sequence diversity baseline before BMP **Implement BMP DNA** sequence diversity after BMP **Data Comparison**

- Fecal, sediment, & water **collection** (Current)

Building a scientific foundation for sound environmental decisions

Discovery of Novel Source Identifiers

One gene – one group **PHYLOGENETIC Approach**

Multiple genes – one bacterial group **GENOMICS Approach**

Multiple genes – Multiple bacterial groups METAGENOMICS Approach

Building a scientific foundation for sound environmental decisions

Use of Phylogenetics to Design New Host-Specific 16S rDNA PCR Assays

 Survey evolutionary relationship between *Bacteroides* from different sources

Visualize relationships with trees

Sequences from same source can cluster together

Approach led to a horse-specificPCR assay

(in press, AEM June 2005)

Building a scientific foundation for sound environmental decisions

Use of Genomics to Identify Species-Specific DNA Sequences

- Standard for measuring fecal pollution
- Opportunistic pathogens
- Enterococci genomes already sequenced (E. faecalis and E. faecium)

Multiple genes – one bacterial group **GENOMICS**

Building a scientific foundation for sound environmental decisions

Use of Metagenomics to Design Cow-Specific PCR Assays

- Comparison of Bos taurus and Sus scrofa genome communities
- Access to yet to be cultured microorganism genomes
- Identification of non-16S rRNA host-specific DNA targets

Multiple genes – Multiple bacterial groups METAGENOMICS

Building a scientific foundation for sound environmental decisions

The Future of Source Tracking

- New methods will arise
- Some methods will become obsolete

Building a scientific foundation for sound environmental decisions

USEPA ORD Support for Microbial Source Tracking

- Guide Document
- Regional Workshops
- Collaboration

Development of Regional Centers of Excellence